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A generalized duality transformation of the anisotropic XY 
chain in a magnetic fieId 

Haye Hinrichsen 
Physikalisches Institut. UniveniW Bonn, Nussallee 12, D-53115 Bonn, Federal Republic of 
Germany 

Received 2 November 1993 

Abstract We consider the anisotropic X Y  chain in a magnetic field with special boundary 
conditions described by a two-parameter Hamiltonian. It is shown that the exchange of the 
parameters corresponds to a similarity Wansformation, .which reduces in a special limit to the 
king duality tmufomtion. 

In this paper we consider the anisotropic XY chain in a magnetic field which is defined by 
the Hamiltonian 

where q and q are complex parameters and U,? are Pauli matrices acting on site j .  Up 
to boundary terms, which will play a crucial role here, H can be rewritten as 

L L 

H X Y ( q ,  h )  = -: (qu,?u& + q-'u/n,$) - h x u ;  (2) 
j = l  j = l  

where h = (q + q-')/2 is the magnetic field. This Hamiltonian has a long history [ 1,2] 
and provides a good model for helium adsorbed on metallic surfaces (q real and q on 
the unit circle). It also gives the master equation of the kinetic king model [3] (q = 1 
and q real)'and plays a role in one-dimensional reaction-diffusion processes [4]. For the 
special boundary conditions defined in (1) the chain has been shown to be invariant under 
a two-parameter deformation of the su(1ll) superalgebra [5], and some of their correlation 
functions in the massless regime have been computed in [6]. 

The aim of this paper is to show that for these boundary conditions the exchange of the 
parameters q and q in the Hamiltonian (1) corresponds to a~similarity transformation 

HXY(rl,  q) = H X Y ( q ,  V I  (3) 

which reduces in a special limit to the king duality transformation (here '=' denotes equality 
up to a similarity transformation). The Ising limit of the XY chain is given by 

H"(a, b) = hh& f f ) H x y ( a c ,  bc) (4) 
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where 

is the king Hamiltonian with mixed boundary conditions [7]. One of the most remarkable 
properties of the Ising model is its self-duality 181. For the boundary conditions defined in 
(5) the Ising duality transformation 

I 
U; -+ e; ==nu; U? J -+ e? J = OXO? I J+I (6) 

i=l 

takes place as 

H"(Q, b) = H'(b, a) +a(.: - U;). (7) 

Using (4) we can rewrite (7) as 

lim ( l /$ )Hxy(a$ .  b$) = lim ( l /e )Hxy(b$ ,  l / @ .  (8) 
5-tm F-tm 

Notice that we absorbed the surface terms in (7) by inserting the argument l /u$ instead 
of U$ on the RHS of (8). In order to symmetrize this expression, we perform a rotation 

,,: -+ UY -+ -uX uf + U; ( j  = 1,. . . , L) 

on the LHS of (8) 

J J J 

HXY(u$ ,  b f )  = Hxy( l /ae ,  be) (10) 

and we obtain 

lim ( l / 6 )Hxy( l /u$ ,  be) = lim ( l /$ )Hxy(be ,  l /u$) .  ( 1 1 )  4-t- t-m 

This means that (3) holds for 7 = l/u$ and q = b$ in the limit $ + CO. 
The aim of this paper is to prove (3),  i.e. we derive a similarity transformation 

H X Y ( q ,  q)  = U H x y ( q ,  q)U-' (12) 

for arbitrary parameters q and q. Let us first summarize our results. For this purpose let 
us introduce fermionic operators by a Jordan-Wigner transformation 

j-1 

which allows the Hamiltonian ( 1 )  to be written as 
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Denoting 

4 
11 

a = -  

the explicit expression for U ( a )  is given by the~polynomial 

where the generators Gw are defined by 

c. ~ rP5X ... TX 
J I  11 I" G, = 

l<h-+~+.<jn<L 

By convention we take Go 
number. N is a normalization constant which is given by 

1, and [ L / 2 ]  denotes the truncation of L / 2  to an integer 

Notice that the transformation depends only on the ratio a = 4/11. Obviously the 
normalization N vanishes for aL = -1 so that the transformation (12) diverges, and 
therefore we will exclude this case in the following. For a = 1 the transformation U ( a )  
reduces to the identity, and this is what we expect since for 11 = q the exchange of 11 and 
4 does not effect a change in the Hamiltonian (1). 

In order to express the transformation in a formal way, let us introduce the 'time-ordered 
product' 

which manges the operators r,? in increasing order with respect to their fermionic 
commutation relations. Observing that 

1 
k! G% = -TG: 

where 

we can rewrite (16) formally as a time-ordered exponential of Gz 
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This expression suggests that the inverse of U ( @  is obtained by taking w + -U, 
i.e. o( + t r 1 .  In fact, one can show that 

U-l(a) = u(u-l). (23) 

On the other hand we observe that G: = -Gz and thus the transformation (12) is an 
orthogonal one 

ur(ol) =~u-1(01). 

5 i . Y . Z  = u(a)Uyu-1(01). 

qz;5f+l +qz; = qu;u;+l + quf 
qbY5Y J J+1 + f15;+l = 17ujyujy+l + qu;+, 

e;e;+l = U. X Y  U. 

P ( q ,  q) = -- CkUj -I-* Cj+l + q-luj - Y " Y  uj+1 + 75; + 1 - I - Z  Uj+lI 

+ q-'uYuY + quf + q- I 2  Uj+J = -- x[7u;u;+l 

It is interesting to know how the Pauli matrices change under the transformation 

J 

As we are going to show below, one obtains three important identities 

J J+1' 

Because of these identities we have 
L-1 

2 j=1 

2 j = 1  

= H X Y ( r 7 .  4 )  

L-1 

J J+l  

and our claim in (3) is proved. The identities .(26)-(28) contain even more information; 
since they hold independently for every 1 < j < L, it is obvious that even the spectrum of 
the Hamiltonian 

L-1 

(30) I? = -4 [aj(qu;~j+~ +q$) + bj(q- I Y Y  uj uj+l + q - ' ~ ; + ~ )  + c.u*uy ] J j j + l  
j=l 

is invariant under the exchange q ff q for arbitrary coefficients ai, bj and cj. 
We are now going to derive the identities (26H28). For this purpose we first consider 

the transformation properties of the fermionic operators ?Ty = U r y  U-'. It turns out that 

where 
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and 
&/2)-1 + &L/Z)+l 

e = 0 1 L / 2 + 0 1 - L / z  . (33) 

Notice also that the transformation (31) is an orthogonal one (ELl Ui,kUj ,k  = 8 i 8 j )  and for 
(Y = 1 reduces to the identity transformation u i , j  = & j .  Furthermore the coefficients ui,j 

depend only on the difference of their indices i - j .  Obviously r/ is invariant under the 
similarity transformation, and this immediately proves (28). By adding the Jordan-Wigner 
transformation (13) we obtain the following transformation rules for the other terms occuring 
in the Hamiltonian 

j-I L 

z;z;+, = ( ~ - O I - ~ ) ~ O ~ ~ - ~ + ~ U Y S  k k + l , j - l  uY+(e-a)  , O1i-"lU;s j+l ,k- l~;  
k=l k=j+Z 

+ (1 - eWjL + eu,%j'+, (34) 

which means that the q c) q transformation converts local observables to linear 
combinations of shings measuring the charge between certain positions. Notice that (34)- 
(37) simplify in the thermodynamic limit L + co, where e + 01 if 1011 < 1 and e + w-' 
if 1011 > 1, respectively. 

We have discovered the identity (12) by first noticing that the spectra of H X Y ( q ,  q )  and 
H X Y ( q ,  q )  are identical and we have computed the relations (34)-(37) by hand. Then using 
these results we conjectured the general smcture of the transformation (16). 

Let us finally check the king limit described above (cf equation (11)). For q + co and 
q + 0 equations (26) and (27) reduce to 
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Now if we rotate Bz and BY as in (9), we end up with 

and this is just the king duality transformation given in (6). 
The 4 * q symmetry (29) may be interpreted physically as follows: The parameter 

q fixes (apart from the magnetic field) the boundary conditions of the system, while the 
parameter q describes the bulk anisotropy. So the exchange of 4 and q may be understood 
as a transformation which exchanges the bulk and boundary properties of the chain. An 
investigation of correlation functions confirms this interpretation. 
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