A generalized duality transformation of the anisotropic XY chain in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 271121
(http://iopscience.iop.org/0305-4470/27/4/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:17

Please note that terms and conditions apply.

A generalized duality transformation of the anisotropic $X Y$ chain in a magnetic field

Haye Hinrichsen
Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Federal Republic of Germany

Received 2 November 1993

Abstract

We consider the anisotropic XY chain in a magnetic field with special boundary conditions described by a two-parameter Hamiltonian. It is shown that the exchange of the parameters corresponds to a similarity transformation, which reduces in a special limit to the Ising duality transformation.

In this paper we consider the anisotropic $X Y$ chain in a magnetic field which is defined by the Hamiltonian

$$
\begin{equation*}
H^{X Y}(\eta, q)=-\frac{1}{2} \sum_{j=1}^{L-1}\left(\eta \sigma_{j}^{x} \sigma_{j+1}^{x}+\eta^{-1} \sigma_{j}^{y} \sigma_{j+1}^{y}+q \sigma_{j}^{z}+q^{-1} \sigma_{j+1}^{z}\right) \tag{1}
\end{equation*}
$$

where q and η are complex parameters and $\sigma_{j}^{x, y, z}$ are Pauli matrices acting on site j. Up to boundary terms, which will play a crucial role here, H can be rewritten as

$$
\begin{equation*}
H^{X Y}(\eta, h)=-\frac{1}{2} \sum_{j=1}^{L}\left(\eta \sigma_{j}^{x} \sigma_{j+1}^{x}+\eta^{-1} \sigma_{j}^{y} \sigma_{j+1}^{y}\right)-h \sum_{j=1}^{L} \sigma_{j}^{z} \tag{2}
\end{equation*}
$$

where $h=\left(q+q^{-1}\right) / 2$ is the magnetic field. This Hamiltonian has a long history [1,2] and provides a good model for helium adsorbed on metallic surfaces (η real and q on the unit circle). It also gives the master equation of the kinetic Ising model [3] ($q=1$ and η real) and plays a role in one-dimensional reaction-diffusion processes [4]. For the special boundary conditions defined in (1) the chain has been shown to be invariant under a two-parameter deformation of the $s u(1 \mid 1)$ superalgebra [5], and some of their correlation functions in the massless regime have been computed in [6].

The aim of this paper is to show that for these boundary conditions the exchange of the parameters q and η in the Hamiltonian (1) corresponds to a similarity transformation

$$
\begin{equation*}
H^{X Y}(\eta, q) \doteq H^{X Y}(q, \eta) \tag{3}
\end{equation*}
$$

which reduces in a special limit to the Ising duality transformation (here ' $=$ ' denotes equality up to a similarity transformation). The Ising limit of the $X Y$ chain is given by

$$
\begin{equation*}
H^{\text {ls }}(a, b)=\lim _{\xi \rightarrow \infty}(1 / \xi) H^{X Y}(a \xi, b \xi) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
H^{1 s}(a, b)=-\frac{1}{2} \sum_{j=1}^{L-1}\left(a \sigma_{j}^{x} \sigma_{j+1}^{x}+b \sigma_{j}^{z}\right) \tag{5}
\end{equation*}
$$

is the Ising Hamiltonian with mixed boundary conditions [7]. One of the most remarkable properties of the Ising model is its self-duality [8]. For the boundary conditions defined in (5) the Ising duality transformation

$$
\begin{equation*}
\sigma_{j}^{x} \rightarrow \tilde{\sigma}_{j}^{x}=\prod_{i=1}^{j} \sigma_{i}^{z} \quad \sigma_{j}^{z} \rightarrow \tilde{\sigma}_{j}^{z}=\sigma_{j}^{x} \sigma_{j+1}^{x} \tag{6}
\end{equation*}
$$

takes place as

$$
\begin{equation*}
H^{1 s}(a, b) \doteq H^{15}(b, a)+a\left(\sigma_{L}^{z}-\sigma_{\mathrm{I}}^{z}\right) \tag{7}
\end{equation*}
$$

Using (4) we can rewrite (7) as

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty}(1 / \xi) H^{X Y}(a \xi, b \xi) \doteq \lim _{\xi \rightarrow \infty}(1 / \xi) H^{X Y}(b \xi, 1 / a \xi) \tag{8}
\end{equation*}
$$

Notice that we absorbed the surface terms in (7) by inserting the argument $1 / a \xi$ instead of $a \xi$ on the RHS of (8). In order to symmetrize this expression, we perform a rotation
$\sigma_{j}^{x} \rightarrow \sigma_{j}^{y} \quad \sigma_{j}^{y} \rightarrow-\sigma_{j}^{x} \quad \sigma_{j}^{z} \rightarrow \sigma_{j}^{z} \quad(j=1, \ldots, L)$
on the LHS of (8)

$$
\begin{equation*}
H^{X Y}(a \xi, b \xi) \doteq H^{X Y}(1 / a \xi, b \xi) \tag{10}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty}(1 / \xi) H^{X Y}(1 / a \xi, b \xi) \doteq \lim _{\xi \rightarrow \infty}(1 / \xi) H^{X Y}(b \xi, 1 / a \xi) \tag{11}
\end{equation*}
$$

This means that (3) holds for $\eta=1 / a \xi$ and $q=b \xi$ in the limit $\xi \rightarrow \infty$.
The aim of this paper is to prove (3), i.e. we derive a similarity transformation

$$
\begin{equation*}
H^{X Y}(\eta, q)=U H^{X Y}(q, \eta) U^{-1} \tag{12}
\end{equation*}
$$

for arbitrary parameters η and q. Let us first summarize our results. For this purpose let us introduce fermionic operators by a Jordan-Wigner transformation

$$
\begin{equation*}
\tau_{j}^{x, y}=\left(\prod_{i=1}^{j-1} \sigma_{i}^{z}\right) \sigma_{j}^{x, y} \tag{13}
\end{equation*}
$$

which allows the Hamiltonian (1) to be written as
$H(n, q)=\frac{1}{2} \sum_{j=1}^{L-1}\left(\eta \tau_{j}^{2} \tau_{j+1}^{1}-\eta^{-1} \tau_{j}^{1} \tau_{j+1}^{2}+q \tau_{j}^{1} \tau_{j}^{2}+q^{-1} \tau_{j+1}^{1} \tau_{j+1}^{2}\right)$.

Denoting

$$
\begin{equation*}
\alpha=\frac{q}{\eta} \quad \omega=\left(\frac{\alpha^{1 / 2}-\alpha^{-1 / 2}}{\alpha^{1 / 2}+\alpha^{-1 / 2}}\right) \tag{15}
\end{equation*}
$$

the explicit expression for $U(\alpha)$ is given by the polynomial

$$
\begin{equation*}
U(\alpha)=\frac{1}{\sqrt{N}} \sum_{k=0}^{[L / 2]} \omega^{k} G_{2 k} \tag{16}
\end{equation*}
$$

where the generators $G_{2 k}$ are defined by

$$
\begin{equation*}
G_{n}=\sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{n} \leqslant L} \tau_{j_{1}}^{x} \tau_{j_{2}}^{x} \cdots \tau_{j_{n}}^{x} \tag{17}
\end{equation*}
$$

By convention we take $G_{0} \equiv 1$, and [$L / 2$] denotes the truncation of $L / 2$ to an integer number. N is a normalization constant which is given by

$$
\begin{equation*}
N=\sum_{k=0}^{[L / 2]}\binom{L}{2 k} \omega^{2 k}=2^{L-1} \frac{1+\alpha^{L}}{(1+\alpha)^{L}} \tag{18}
\end{equation*}
$$

Notice that the transformation depends only on the ratio $\alpha=q / \eta$. Obviously the normalization N vanishes for $\alpha^{L}=-1$ so that the transformation (12) diverges, and therefore we will exclude this case in the following. For $\alpha=1$ the transformation $U(\alpha)$ reduces to the identity, and this is what we expect since for $\eta=q$ the exchange of η and q does not effect a change in the Hamiltonian (1).

In order to express the transformation in a formal way, let us introduce the 'time-ordered product'

$$
T \tau_{i}^{x} \tau_{j}^{x}= \begin{cases}\tau_{i}^{x} \tau_{j}^{x} & i<j \tag{19}\\ -\tau_{j}^{x} \tau_{i}^{x} & i>j \\ 0 & i=j\end{cases}
$$

which arranges the operators τ_{j}^{x} in increasing order with respect to their fermionic commutation relations. Observing that

$$
\begin{equation*}
G_{2 k}=\frac{1}{k!} T G_{2}^{k} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{2}=\sum_{1 \leqslant j_{1}<j_{2} \leqslant L} \tau_{j_{1}}^{x} \tau_{j_{2}}^{x} \tag{21}
\end{equation*}
$$

we can rewrite (16) formally as a time-ordered exponential of G_{2}

$$
\begin{equation*}
U(\alpha)=\frac{1}{\sqrt{N}} T \exp \left(\omega G_{2}\right) \tag{22}
\end{equation*}
$$

This expression suggests that the inverse of $U(\alpha)$ is obtained by taking $\omega \rightarrow-\omega$, i.e. $\alpha \rightarrow \alpha^{-1}$. In fact, one can show that

$$
\begin{equation*}
U^{-1}(\alpha)=U\left(\alpha^{-1}\right) \tag{23}
\end{equation*}
$$

On the other hand we observe that $G_{2}^{T}=-G_{2}$ and thus the transformation (12) is an orthogonal one

$$
\begin{equation*}
U^{T}(\alpha)=U^{-1}(\alpha) \tag{24}
\end{equation*}
$$

It is interesting to know how the Pauli matrices change under the transformation

$$
\begin{equation*}
\tilde{\sigma}_{j}^{x, y, z}=U(\alpha) \sigma_{j}^{x, y, z} U^{-1}(\alpha) \tag{25}
\end{equation*}
$$

As we are going to show below, one obtains three important identities

$$
\begin{align*}
& \eta \tilde{\sigma}_{j}^{x} \tilde{\sigma}_{j+1}^{x}+q \tilde{\sigma}_{j}^{z}=q \sigma_{j}^{x} \sigma_{j+1}^{x}+\eta \sigma_{j}^{z} \tag{26}\\
& q \tilde{\sigma}_{j}^{y} \tilde{\sigma}_{j+1}^{y}+\eta \tilde{\sigma}_{j+1}^{z}=\eta \sigma_{j}^{y} \sigma_{j+1}^{y}+q \sigma_{j+1}^{z} \tag{27}\\
& \tilde{\sigma}_{j}^{x} \tilde{\sigma}_{j+1}^{y}=\sigma_{j}^{x} \sigma_{j+1}^{y} . \tag{28}
\end{align*}
$$

Because of these identities we have

$$
\begin{align*}
\tilde{H}^{X Y}(q, \eta) & =-\frac{1}{2} \sum_{j=1}^{L-1}\left[q \tilde{\sigma}_{j}^{x} \tilde{\sigma}_{j+1}^{x}+q^{-1} \tilde{\sigma}_{j}^{y} \tilde{\sigma}_{j+1}^{y}+\eta \tilde{\sigma}_{j}^{z}+\eta^{-1} \tilde{\sigma}_{j+1}^{z}\right] \\
& =-\frac{1}{2} \sum_{j=1}^{L-1}\left[\eta \sigma_{j}^{x} \sigma_{j+1}^{x}+\eta^{-1} \sigma_{j}^{y} \sigma_{j+1}^{y}+q \sigma_{j}^{z}+q^{-1} \sigma_{j+1}^{z}\right] \\
& =H^{X Y}(\eta, q) \tag{29}
\end{align*}
$$

and our claim in (3) is proved. The identities (26)-(28) contain even more information; since they hold independently for every $1 \leqslant j<L$, it is obvious that even the spectrum of the Hamiltonian

$$
\begin{equation*}
\bar{H}=-\frac{1}{2} \sum_{j=1}^{L-1}\left[a_{j}\left(\eta \sigma_{j}^{x} \sigma_{j+1}^{x}+q \sigma_{j}^{z}\right)+b_{j}\left(\eta^{-1} \sigma_{j}^{y} \sigma_{j+1}^{y}+q^{-1} \sigma_{j+1}^{z}\right)+c_{j} \sigma_{j}^{x} \sigma_{j+1}^{y}\right] \tag{30}
\end{equation*}
$$

is invariant under the exchange $q \leftrightarrow \eta$ for arbitrary coefficients a_{j}, b_{j} and c_{j}.
We are now going to derive the identities (26)-(28). For this purpose we first consider the transformation properties of the fermionic operators $\tilde{\tau}_{j}^{x, y}=U \tau_{j}^{x, y} U^{-1}$. It turns out that

$$
\begin{equation*}
\tilde{\tau}_{i}^{x}=\sum_{i=1}^{L} u_{i, j} \tau_{j}^{x} \quad-\tilde{\tau}_{j}^{y}=\tau_{j}^{y} \tag{31}
\end{equation*}
$$

where

$$
u_{i, j}= \begin{cases}\varrho & \text { if } i=j \tag{32}\\ (\varrho-\alpha) \alpha^{i-j} & \text { if } i<j \\ \left(\varrho-\alpha^{-1}\right) \alpha^{i-j} & \text { if } i>j\end{cases}
$$

and

$$
\begin{equation*}
Q=\frac{\alpha^{(L / 2)-1}+\alpha^{(-L / 2)+1}}{\alpha^{L / 2}+\alpha^{-L / 2}} \tag{33}
\end{equation*}
$$

Notice also that the transformation (31) is an orthogonal one ($\sum_{k=1}^{L} u_{i, k} u_{j, k}=\delta_{i, j}$) and for $\alpha=1$ reduces to the identity transformation $u_{i, j}=\delta_{i, j}$. Furthermore the coefficients $u_{i, j}$ depend only on the difference of their indices $i-j$. Obviously τ_{j}^{y} is invariant under the similarity transformation, and this immediately proves (28). By adding the Jordan-Wigner transformation (13) we obtain the following transformation rules for the other terms occuring in the Hamiltonian

$$
\begin{align*}
& \tilde{\sigma}_{j}^{x} \tilde{\sigma}_{j+1}^{x}=\left(\varrho-\alpha^{-1}\right) \sum_{k=1}^{j-1} \alpha^{j-k+1} \sigma_{k}^{y} S_{k+1, j-1} \sigma_{j}^{y}+(\varrho-\alpha) \sum_{k=j+2}^{L} \alpha^{j-k+1} \sigma_{j}^{x} S_{j+1, k-1} \sigma_{k}^{x} \\
&+(1-\varrho \alpha) \sigma_{j}^{z}+\varrho \sigma_{j}^{x} \sigma_{j+1}^{x} \tag{34}\\
& \tilde{\sigma}_{j}^{y} \tilde{\sigma}_{j+1}^{y}=\left(\varrho-\alpha^{-1}\right) \sum_{k=1}^{j-1} \alpha^{j-k} \sigma_{k}^{y} S_{k+1, j} \sigma_{j+1}^{y}+(\varrho-\alpha) \sum_{k=j+2}^{L} \alpha^{j-k} \sigma_{j+1}^{x} S_{j, k-1} \sigma_{k}^{x} \\
&+\left(1-\varrho \alpha^{-1}\right) \sigma_{j+1}^{z}+\varrho \sigma_{j}^{y} \sigma_{j+1}^{y} \tag{35}\\
& \tilde{\sigma}_{j}^{z}=\left(\alpha^{-1}-\varrho\right) \sum_{k=1}^{j-1} \alpha^{j-k} \sigma_{k}^{y} S_{k+1, j-1} \sigma_{j}^{y}+(\alpha-\varrho) \sum_{k=j+1}^{L} \alpha^{j-k} \sigma_{j}^{x} S_{j+1, k-1} \sigma_{k}^{x}+\varrho \sigma_{j}^{z} \\
& \quad+(\varrho-\alpha) \sum_{k=j+2}^{L} \alpha^{j-k}\left(\sigma_{j}^{y} S_{j+1, k-1} \sigma_{k}^{x}-\alpha \sigma_{j+1}^{y} S_{j+2, k-1} \sigma_{k}^{x}\right) \\
& \quad+\left(\varrho\left(\alpha+\alpha^{-1}\right)-1\right) \sigma_{j}^{y} \sigma_{j+1}^{x} .
\end{align*}
$$

Here $S_{i, k}$ denotes the Jordan-Wigner string between the sites i and k

$$
\begin{equation*}
S_{i, k}=\prod_{j=i}^{k} \sigma_{j}^{z} \quad S_{i+1, i} \equiv 1 \tag{38}
\end{equation*}
$$

which means that the $q \leftrightarrow \eta$ transformation converts local observables to linear combinations of strings measuring the charge between certain positions. Notice that (34)(37) simplify in the thermodynamic limit $L \rightarrow \infty$, where $\varrho \rightarrow \alpha$ if $|\alpha|<1$ and $\varrho \rightarrow \alpha^{-1}$ if $|\alpha|>1$, respectively.

We have discovered the identity (12) by first noticing that the spectra of $H^{X Y}(\eta, q)$ and $H^{X Y}(q, \eta)$ are identical and we have computed the relations (34)-(37) by hand. Then using these results we conjectured the general structure of the transformation (16).

Let us finally check the Ising limit described above (cf equation (11)). For $q \rightarrow \infty$ and $\eta \rightarrow 0$ equations (26) and (27) reduce to

$$
\begin{equation*}
\tilde{\sigma}_{i}^{z}=\sigma_{i}^{x} \sigma_{i+1}^{x} \quad \tilde{\sigma}_{i}^{y} \tilde{\sigma}_{i+1}^{y}=\sigma_{i+1}^{z} \tag{39}
\end{equation*}
$$

Now if we rotate $\tilde{\sigma}^{x}$ and $\tilde{\sigma}^{y}$ as in (9), we end up with

$$
\begin{equation*}
\tilde{\sigma}_{i}^{z}=\sigma_{i}^{x} \sigma_{i+1}^{x} \quad \tilde{\sigma}_{i}^{x} \tilde{\sigma}_{i+1}^{x}=\sigma_{i+1}^{z} \tag{40}
\end{equation*}
$$

and this is just the Ising duality transformation given in (6).
The $q \leftrightarrow \eta$ symmetry (29) may be interpreted physically as follows: The parameter q fixes (apart from the magnetic field) the boundary conditions of the system, while the parameter η describes the bulk anisotropy. So the exchange of q and η may be understood as a transformation which exchanges the bulk and boundary properties of the chain. An investigation of correlation functions confirms this interpretation.

Acknowledgments

I would like to thank V Rittenberg for valuable discussions and S R Dahmen for a careful reading of the manuscript.

References

[1] den Nijs N 1988 Phase Transitions and Critical Phenomena vol 12 ed C Domb and J L Lebowitz (New York; Academic) p 219
[2] Barouch E, McCoy B M and Dresden M 1970 Phys. Rev. A 21075 Barouch E and McCoy B M 1971 Phys. Rev. A 3786
[3] Siggia E D 1977 Phys. Rev. B 162319
[4] Alcaraz F C, Droz M, Henkel M and Rittenberg V 1992 Reaction-diffusion processes, critical dynamics and quantum chains Preprint UGVA-DPT 1992/12-799 (Geneva)
[5] Saleur H 1989 Trieste Conference on Recent Developments in Conformal Field Theories ed Randjikar-Daemi, E Sezgin and J B Zuber (Singapore: World Scientific) p 160
Hinrichsen H and Rittenberg V 1992 Phys. Lett. 275B 350
[6] Hinrichsen H and Rittenberg V 1993 Phys. Lett. 304B I15
[7] Cardy J L 1986 Nucl. Phys. B 275200
[8] Kogut J B 1979 Rev. Mod. Phys. 51659

